ВЛИЯНИЕ ИЗВЕСТКОВАНИЯ И ОРГАНИЧЕСКИХ УДОБРЕНИЙ НА СОДЕРЖАНИЕ ГУМУСА И КИСЛОТНОСТЬ ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВ РАЗНОЙ ЭРОДИРОВАННОСТИ И ПРОДУКТИВНОСТЬ ЗЕРНОВОГО СЕВООБОРОТА

Н. Н. ЦЫБУЛЬКО, И. А. ЛОГАЧЕВ, В. Б. ЦЫРИБКО, А. М. УСТИНОВА

Институт почвоведения и агрохимии НАН Беларуси, г. Минск, Республика Беларусь, 220108, e-mail: nik.nik1966@tut.by; ia_logachev@list.ru; m029@yandex.by; brissa_erosion@mail.ru

(Поступила в редакцию 14.09.2022)

В полевых опытах изучено влияние известкования и применения органических удобрений на агрохимические показатели дерново-подзолистых почв разной эродированности и продуктивность зернового севооборота. Установлено, что за пятилетнюю ротацию зернового севооборота при применении минеральной системы удобрения содержание гумуса в неэродированной и эродированных почвах уменьшается на 0,04–0,11 %. Органоминеральная система удобрения с внесением под вторую и четвертую культуры севооборота органических удобрений в дозах по 40 т/га способствует существенному повышению обеспеченности почв гумусом. В конце ротации пятилетнего севооборота без проведения известкования почв степень кислотности их значительно возрастает. известкование почв под вторую и четвертую культуры в севообороте увеличивает рНкс1 с переходом из одной группы кислотности в другую.

Известкование почв под две культуры севооборота на фоне NPK не обеспечивает значительного увеличения его продуктивности. Применение под две культуры севооборота органических удобрений в дозах по 40 т/га способствует существенному повышению общей продуктивности севооборота — на 5,9—6,5 ц/га зерновых единиц в зависимости от эродированности почвы. Наиболее эффективной системой удобрения в севообороте является органоминеральная система с известкованием, которая обеспечивает на почвах разной степени эродированности прибавки 7,0—9,5 ц/га зерновых единиц, а в среднем по почвенно-эрозионной катене — 8,2 ц/га зерновых единиц.

Ключевые слова: эродированные почвы, система удобрения, известкование, органические удобрения, минеральные удобрения, севооборот, продуктивность.

In field experiments, the effect of liming and the use of organic fertilizers on the agrochemical parameters of soddy-podzolic soils of different erodedness and the productivity of grain crop rotation was studied. It has been established that over a five-year rotation of the grain crop rotation with the use of a mineral fertilizer system, the humus content in non-eroded and eroded soils decreases by 0.04–0.11 %. The organomineral fertilizer system with the introduction of organic fertilizers under the second and fourth crops of the crop rotation in doses of 40 t/ha contributes to a significant increase in the provision of soils with humus. At the end of a five-year crop rotation without liming the soils, their degree of acidity increases significantly. Liming soils for the second and fourth crops in the crop rotation increases pH_{KCI} with the transition from one acidity group to another.

Liming of soils for two crops of crop rotation against the background of NPK does not provide a significant increase in its productivity. The use of organic fertilizers for two crops of crop rotation in doses of 40 t/ha contributes to a significant increase in the overall productivity of the crop rotation – by 0.59–0.65 t/ha of grain units, depending on soil erosion. The most effective fertilizer system in crop rotation is the organomineral system with liming, which provides an increase of 0.70–0.95 t/ha of grain units on soils of varying degrees of erosion, and an average of 0.82 t/ha of grain units on soil erosion catena.

Key words: eroded soils, fertilization system, liming, organic fertilizers, mineral fertilizers, crop rotation, productivity.

Введение

На территории Беларуси эрозия почв – один из основных факторов их деградации, что вызвано как природными условиями, так и антропогенным воздействием – распространением склонового рельефа и высокой распаханностью сельскохозяйственных земель. Водно-эрозионные процессы вызываются талыми и ливневыми водами и проявляются на склонах в виде смыва верхней части почвенного покрова (плоскостная и струйчатая эрозия) или в виде размыва в глубину (линейная эрозия). Водная эрозия преобладает в северной и центральной частях республики (Витебская область – 9,9 % от общей площади пахотных земель, Могилевская – 8,9 %, Минская – 8,6 %, Гродненская – 8,1 %) [1, 2].

Эрозия приводит к разрушению верхнего, наиболее плодородного гумусового слоя и формированию почв разной степени смытости с ухудшенными агрохимическими показателями. Изменения агрохимических свойств смытых почв связаны с выносом тех или иных элементов питания, а также припахиванием нижних горизонтов в связи со смывом почв.

Смытые почвы существенно отличаются от полнопрофильных прежде всего уменьшенными запасами и содержанием гумуса, что больше всего ухудшает их плодородие. Снижение запасов гумуса обуславливается уменьшением его содержания и мощности гумусового горизонта, а также приближением к поверхности менее гумусированных горизонтов почвы.

Различия в кислотности (р H_{KCI}) как несмытых, так и в разной степени смытых почв связаны с влиянием особенностей почвообразующих пород и их гранулометрического состава, то есть реакция почвенного раствора эродированных почв определяется теми породами, на которых они сформировались, и глубиной их выщелачивания. Поэтому по градации кислотности разные по смытости почвы могут входить в одну группу с несмытыми почвами [1].

Потери гумуса и элементов питания, ухудшение агрофизических, биологических и агрохимических свойств отрицательно сказывается на производительной способности почв и урожайности воз-

делываемых на них сельскохозяйственных культур. В наибольшей степени реагируют на эродированность почвы пропашные культуры, урожайность которых снижается на слабосмытых почвах на 20 %, на среднесмытых – на 40 и на сильносмытых почвах – на 60 %. Недоборы урожаев зерновых и зернобобовых культур на слабоэродированных почвах в среднем составляют 12 %, на среднеэродированных – 28 и на сильноэродированных почвах – 40 %. Продуктивность многолетних трав может уменьшаться в зависимости от эродированности почвы на 5–30 % [3, 4].

Основная часть

Исследования проводили в 2018–2021 годах в полевом опыте на стационаре «Стоковые площадки» Института почвоведения и агрохимии, расположенном в ОАО «Щомыслица» Минского района. Стационар заложен по геоморфологическому профилю (катене) от водораздельной равнины до нижней части склона. Склон южной экспозиции крутизной 5–7°.

Объектом исследований являлись в разной степени эродированные дерново-палево-подзолистые почвы, сформированные на лессовидных суглинках. На водораздельной равнине расположена неэродированная почва, в верхней части склона — среднеэродированная почва, в средней части склона — сильноэродированная почва.

Средние значения основных агрохимических показателей, исследуемых дерново-подзолистых легкосуглинистых почв разной степени эродированности перед закладной опыта следующие: неэродированная: $pH_{KCl} - 5,61$, гумус -2,13 %, $P_2O_5 - 231$ мг/кг почвы, $K_2O - 238$ мг/кг почвы; среднеэродированная: $pH_{KCl} - 5,57$, гумус -1,93 %, $P_2O_5 - 250$ мг/кг почвы, $K_2O - 229$ мг/кг почвы; сильноэродированная: $pH_{KCl} - 5,54$, гумус -1,40 %, $P_2O_5 - 221$ мг/кг почвы, $K_2O - 203$ мг/кг почвы.

Исследования проводили в зерновом севообороте: озимая пшеница ($2017 \, \Gamma$.) – овес ($2018 \, \Gamma$.) – яровой рапс ($2019 \, \Gamma$.) – яровая пшеница ($2020 \, \Gamma$.) – озимая рожь ($2021 \, \Gamma$.). Стоит отметить, что в $2017 \, \Gamma$. озимая пшеница использовалась как уравнительный посев, поэтому отбор образцов на урожайность по всем вариантам опыта не проводился.

Схема опыта включала следующие варианты систем удобрения и известкования почв:

- 1 минеральная (минеральные удобрения (NPK) в дозах, рассчитанных на планируемую урожайность возделываемых культур);
- 2 минеральная + известкование (минеральные удобрения (NPK) в дозах, рассчитанных на планируемую урожайность возделываемых культур, а также 6,5 т/га доломитовой муки с осени под овес и яровую пшеницу);
- 3 органоминеральная (подстилочный навоз 40 т/га с осени под овес и яровую пшеницу, минеральные удобрения (NPK) в дозах, рассчитанных на планируемую урожайность возделываемых культур);
- 4 органоминеральная + известкование (подстилочный навоз 40 т/га с осени под овес и яровую пшеницу, минеральные удобрения (NPK) в дозах, рассчитанных на планируемую урожайность возделываемых культур, а также 6,5 т/га доломитовой муки с осени под овес и яровую пшеницу).

Перед закладной полевого опыта (2017 г.) неэродированная почва характеризовалась повышенным содержанием гумуса (2,13 %), среднеэродированная почва — средним содержанием (1,93) и сильно-эродированная почва — низким содержанием (1,40 %). За пятилетний зерновой севооборот на минеральной (NPK) системе удобрения содержание его снизилось на неэродированной почве до 1,92—1,93 % (на 0,08—0,11 %), на среднеэродированной почве — до 1,86—1,89 % (на 0,04—0,07 %), на сильно-эродированной почве — до 1,32—1,33 % (на 0,07—0,08 %) (табл. 1).

Таблица 1. Влияние органических удобрений и известкования на содержание гумуса и степень кислотности дерново-подзолистых почв разной степени эродированности

0	Содержани	ие гумуса, %	pH _{KCl}				
Система удобрения	2017 г.	2021 г.	2017 г.	2021 г.			
Неэродированная почва							
Минеральная	2,13	2,02	5,61	5,05			
Минеральная + известкование	2,13	2,05	5,62	6,21			
Органоминеральная	2,13	2,22	5,62	5,10			
Органоминеральная + известкование	2,13	2,24	5,60	6,19			
Среднеэродированная почва							
Минеральная	1,93	1,86	5,57	5,18			
Минеральная + известкование	1,93	1,89	5,55	6,22			
Органоминеральная	1,93	2,00	5,59	5,13			
Органоминеральная + известкование	1,93	2,00	5,56	6,20			
Сильноэродированная почва							
Минеральная	1,40	1,33	5,55	5,01			
Минеральная + известкование	1,40	1,32	5,56	6,18			
Органоминеральная	1,40	1,50	5,54	5,16			
Органоминеральная + известкование	1,40	1,51	5,53	6,21			

На органоминеральной системе удобрения, где под вторую и четвертую культуры севооборота применяли по 40 т/га органических удобрений, наоборот наблюдалось увеличение обеспеченности почв гумусом. На неэродированной почве содержание его увеличилось до 2,22-2,24 % (на 0,09-0,11 %), на среднеэродированной почве – до 2,00 % (на 0,7 %) и на сильноэродированной почве – до 1,55-1,57 % (на 0,09-0,10 %).

Перед закладной полевого опыта (2017 г.) как неэродированная, так и эродированные почвы по степени кислотности характеризовались слабокислой реакцией с pH_{KCl} – 5,53–5,62. За пятилетнюю ротацию севооборота в вариантах, где не проводилось известкование почв pH_{KCl} их снизилась до 5,01–5,16, что соответствует кислой реакции по принятой градации [5]. В вариантах, где проводили известкование под вторую и четвертую культуры в севообороте наблюдалось снижение степени кислотности. Реакция почвенной среды характеризовалась как близкая к нейтральной – pH_{KCl} 6,18–6,22.

В наших исследованиях из возделываемых культур наибольшую продуктивность обеспечила озимая рожь, которая колебалась в зависимости от эродированности почв и систем удобрения от 52,1 до 75,6 ц/га зерна. У яровой пшеницы и овса урожайность была несколько ниже и составила соответственно 45,5–57,5 ц/га и 30,5–46,3 ц/га. Урожайность ярового рапса колебалась от 16,5 до 24,3 ц/га масло-семян (табл. 2).

Таблица 2. Влияние органических удобрений и известкования на продуктивность культур севооборота

	-						_	
Система удобрения	Овес		Яровой рапс		Яровая пшеница		Озимая рожь	
	*1	2	1	2	1	2	1	2
Неэродированная почва								
Минеральная	35,8	_	19,3	_	49,6	_	65,9	_
Минеральная + известкование	43,2	7,4	19,5	0,2	50,2	0,6	66,1	0,2
Органоминеральная	44,2	8,4	23,2	3,9	53,6	4,0	75,6	9,7
Органоминеральная + известкование	46,3	10,5	24,3	5,0	57,5	7,9	75,5	9,6
Среднеэродированная почва								
Минеральная	33,6	_	17,0	_	48,3	_	62,9	-
Минеральная + известкование	40,3	6,7	17,7	0,7	48,7	0,4	63,6	0,7
Органоминеральная	40,2	6,6	20,8	3,8	53,5	5,2	70,7	7,8
Органоминеральная + известкование	44,2	10,6	21,8	4,8	53,7	5,4	70,6	7,7
Сильноэродированная почва								
Минеральная	30,5	_	16,5	_	45,5	_	52,1	ı
Минеральная + известкование	35,6	5,1	17,1	0,6	48,3	2,8	53,4	1,3
Органоминеральная	35,9	5,4	19,2	2,7	52,9	7,4	62,6	10,5
Органоминеральная + известкование	38,2	7,7	21,2	4,7	53,0	7,5	69,9	17,8
HCP_{05}								
Фактор А (система удобрений)	2,71		2,80		2,29		7,15	
Фактор Б (эродированность)	2,35		2,43		1,98		6,20	

 $^{^*}$ Примечание: 1 – Урожайность в ц/га зерна, масло-семян, 2 – Прибавка к минеральной системе удобрения.

Урожайность овса на неэродированной почве сформирована в зависимости от систем удобрения от 35,8 до 46,3 ц/га зерна. Снижение ее на среднеэродированной почве колебалось от 2,1 до 4,0 ц/га, на сильноэродированной почве – от 5,3 до 12,6 ц/га.

Применение под овес доломитовой муки в дозе 6,5 т/га на фоне минеральной (NPK) обеспечило прибавку зерна на неэродированной, средне- и сильноэродированной почвах соответственно 7,4, 6,7 и 5,1 ц/га. Органоминеральная система удобрения (внесение под овес 40 т/га навоза) дала прибавки к минеральной системе удобрения 8,4, 6,6 и 5,4 ц/га, соответственно. Наиболее высокая продуктивность овса получена при внесении органических и минеральных удобрений и известковании почв, которая составила на неэродированной, средне- и сильноэродированной почвах соответственно 46,3, 44,2 и 38,2 ц/га, а прибавки к минеральной системе удобрения – 10,5, 10,6 и 7,7 ц/га.

Яровой рапс сформировал урожайность на неэродированной почве по вариантам опыта от 19,3 до 24,3 ц/га масло-семян. На средне- и сильноэродированной почве она была ниже соответственно на 1,8–2,5 и 2,4–6,0 ц/га.

Прибавки урожайности масло-семян ярового рапса от последействия внесения доломитовой муки были несущественными -0.2-0.6 ц/га, а от последействия органических удобрений составили 2.7-3.9 ц/га. На органоминеральной системе удобрения с известкованием почв дополнительно получено на неэродированной, средне- и сильноэродированной почвах соответственно 5.0, 4.8 и 4.7 ц/га масло-семян.

Урожайность яровой пшеницы на неэродированной почве колебалась по вариантам систем удобрения от 49,6 до 57,5 ц/га зерна. Снижение ее на среднеэродированной почве изменялось от 0,1 до 4,4 ц/га, на сильноэродированной почве – от 0,7 до 4,5 ц/га.

Применение под яровую пшеницу доломитовой муки в дозе 6,5 т/га на фоне минеральной (NPK) было малоэффективным — прибавки зерна на неэродированной, средне- и сильноэродированной почвах составили соответственно 0,6, 0,4 и 2,8 ц/га. Это объясняется тем, что известкование проводилось под ранее возделываемую в севообороте культуру (овес). Органоминеральная система удобрения (внесение под овес 40 т/га навоза) дала прибавки к минеральной системе удобрения 4,0, 5,2 и 7,4 ц/га соответственно на неэродированной, средне- и сильноэродированной почвах. Близкие прибавки зерна получены при внесении органических и минеральных удобрений и известковании почв, которые составили 5,4—7,5 ц/га.

Озимая рожь сформировала урожайность на неэродированной почве по вариантам опыта от 65,9 до 75,5 ц/га зерна, на средне- и сильноэродированной почвах соответственно от 62,9 до 70,6 и от 52,1 до 69,9 ц/га.

Прибавки урожайности от последействия известкования почв были несущественными -0.2-1.3 ц/га, а от последействия органических удобрений они составили на неэродированной, средне- и сильноэродированной почвах соответственно 9,7, 7,8 и 10,5 ц/га. На органоминеральной системе удобрения с известкованием почв прибавки на неэродированной и среднеэродированной почвах были такими же, как и на органической системе удобрения, а на сильноэродированной почве она составила 17.8 ц/га зерна.

С целью общей оценки продуктивности зернового севооборота в зависимости от применяемых в нем систем удобрения на почвах разной степени эродированности фактическая урожайность возделываемых культур (озимая рожь, яровая пшеница, овес, яровой рапс) переведена в зерновые единицы. Коэффициенты перевода зерна озимой ржи и яровой пшеницы приняты за 1,00, овса -0,80, ярового рапса -1,36 [5].

За ротацию севооборота продуктивность его на почве, не подверженной эрозии, составила в зависимости от применяемой системы удобрения от 42,6 до 50,8 ц/га зерновых единиц. На среднеэродированной почве снижение урожайности колебалось в пределах 2,2–3,5 ц/га зерновых единиц или на 5–7 %. На сильноэродированной почве она была ниже на 5,2–6,5 ц/га зерновых единиц или на 10–15 %. В среднем по почвенно-эрозионной катене продуктивность севооборота составила от 39,7 до 47,9 ц/га зерновых единиц (табл. 3).

Таблица 3. Влияние органических удобрений и известкования на продуктивность севооборота

	1	•					
Система удобрения	Урожайность в среднем за севооборот, ц/га зерновых единиц	Снижение урожайности на эродированных почвах, ц/га зерн. ед.	Прибавка урожайности к минеральной системе удобрения, ц/га зерн. ед.				
Неэродированная почва							
Минеральная	42,6	_	_				
Минеральная + известкование	44,4	_	1,8				
Органоминеральная	49,1	_	6,5				
Органоминеральная + известкование	50,8	_	8,2				
Среднеэродированная почва							
Минеральная	40,3	2,3	-				
Минеральная + известкование	42,2	2,2	1,9				
Органоминеральная	46,2	2,9	5,9				
Органоминеральная + известкование	47,3	3,5	7,0				
Сильноэродированная почва							
Минеральная	36,1	6,5	_				
Минеральная + известкование	38,4	6,0	2,3				
Органоминеральная	42,6	6,5	6,5				
Органоминеральная + известкование	45,6	5,2	9,5				
В среднем по почвенно-эрозионной катене							
Минеральная	39,7	_	_				
Минеральная + известкование	41,7	_	2,0				
Органоминеральная	46,0	_	6,3				
Органоминеральная + известкование	47,9	_	8,2				

На минеральной (NPK) системе удобрения общая продуктивность севооборота составляла на почве, не подверженной эрозии, $42,6\,$ ц/га зерновых единиц, на среднеэродированной почве -40,3, на сильноэродированной почве -36,1, и в среднем по почвенно-эрозионной катене $-39,7\,$ ц/га зерновых единиц.

В варианте с известкованием почв под две культуры севооборота на фоне NPK прибавка урожайности в целом была незначительной – на неэродированной почве 1,8 ц/га зерновых единиц, на

среднеэродированной почве -1,9, на сильноэродированной почве -2,3 и в среднем по катене -2,0 ц/га зерновых единиц.

Применение под две культуры севооборота органических удобрений в дозах по 40 т/га обеспечило существенное повышение общей продуктивности севооборота. Прибавка к минеральной системе удобрения составила на неэродированной почве 6,5 ц/га зерновых единиц, на среднеэродированной почве -5,9 и на сильноэродированной почве -6,5 ц/га зерновых единиц. В среднем по почвенноэрозионной катене получено дополнительно 6,3 ц/га зерновых единиц.

Наиболее эффективной системой удобрения в севообороте была органоминеральная система с известкованием, которая обеспечила на почвах разной степени эродированности прибавки 7,0-9,5 ц/га зерновых единиц, а в среднем по почвенно-эрозионной катене -8,2 ц/га зерновых единиц.

Заключение

За пятилетнюю ротацию зернового севооборота при применении минеральной системы удобрения содержание гумуса в неэродированной и эродированных почвах уменьшается на 0,04–0,11 %. Органоминеральная система удобрения с внесением под вторую и четвертую культуры севооборота органических удобрений в дозах по 40 т/га способствует существенному повышению обеспеченности почв гумусом.

В конце ротации пятилетнего севооборота без проведения известкования почв степень кислотности их значительно возрастает. Известкование почв под вторую и четвертую культуры в севообороте увеличивает р H_{KCI} с переходом из одной группы кислотности в другую.

Известкование почв под две культуры севооборота на фоне NPK не обеспечивает значительного увеличения его продуктивности. Применение под две культуры севооборота органических удобрений в дозах по 40 т/га способствует существенному повышению общей продуктивности севооборота — на 5,9—6,5 ц/га зерновых единиц в зависимости от эродированности почвы. Наиболее эффективной системой удобрения в севообороте является органоминеральная система с известкованием, которая обеспечивает на почвах разной степени эродированности прибавки 7,0—9,5 ц/га зерновых единиц, а в среднем по почвенно-эрозионной катене — 8,2 ц/га зерновых единиц.

ЛИТЕРАТУРА

- 1. Цыбулько, Н. Н. Эрозионная деградация почвенного покрова Беларуси / Н. Н. Цыбулько // Природные ресурсы. -2006. -№ 3. C. 23–32.
- 2. Атлас почв сельскохозяйственных земель Республики Беларусь / В. В. Лапа [и др.]; под общ. ред. В. В. Лапа, А. Ф. Черныша; Ин-т почвоведения и агрохимии. Минск: ИВЦ Минфина, 2017. 170 с.
- 3. Цыбулько, Н. Н. Производительная способность почв, в разной степени подверженных эрозионной деградации / Н. Н. Цыбулько // Аграрная экономика. 2018. № 8. С. 31–37.
- 4. Влияние эродированности дерново-подзолистых почв на продуктивность сельскохозяйственных культур (результаты длительных полевых опытов) / Н. Н. Цыбулько [и др.] // Почвоведение и агрохимия. 2021. № 2 (67). С. 7–17.
- 5. Справочник агрохимика / В. В. Лапа [и др.]; Ин-т почвоведения и агрохимии; под. ред. В. В. Лапа. Минск: ИВЦ Минфина, 2021. 260 с.