ИССЛЕДОВАНИЕ МОТОРНЫХ СВОЙСТВ БИОГАЗОВОГО ТОПЛИВА

А. И. ШИПИН, аспирант ФГБОУ ВО «Вятский государственный университет», Киров, Россия;

В. А. ШАПОРЕВ, аспирант УО «Белорусская государственная сельскохозяйственная академия», Горки, Республика Беларусь

На современном этапе развития науки и техники двигатели внутреннего сгорания (ДВС) остаются основным видом источника энергии для большинства мобильных и стационарных установок. На их долю приходится порядка 80 % всей вырабатываемой в мире механической энергии. Известно, что ДВС являются одними из основных потребителей моторных нефтяных топлив, которые относят к невозобновляемым ресурсам. Учитывая тенденции увеличения потребления нефтепродуктов при сокращении запасов нефти на Земле, особо остро проявляется проблема повышения топливной экономичности [1–3].

В то же время, биогаз — одно из перспективных альтернативных топлив [4]. Биогаз — общее название горючей газовой смеси, возникающей при разложении органических субстанций в результате анаэробного микробиологического процесса (метанового брожения). Его основные компоненты: метан CH_4 — 55—70 % и углекислый газ CO_2 — 30—45 %, а также в очень малых количествах, около 1 %, другие газы, чаще всего — водород H_2 и сероводород H_2 S, удаляемый в биогазовой станции как нежелательный. Сероводород очень агрессивен и вызывает коррозию, что в первую очередь вызывает проблемы с арматурой, газовыми счетчиками, горелками и двигателями. Очищенный от серы биогаз почти не имеет запаха.

Средняя теплота сгорания биогаза, содержащего около 60 % метана CH_4 , равна 22 МДж/м³. Учитывая, что горючая часть биогаза состоит из метана CH_4 (температура воспламенения метана около 645 °C), его причисляют к семейству природных газов.

Полученный на биогазовых установках биогаз может быть использован в качестве моторного топлива транспорта, для питания двигателей внутреннего сгорания стационарных установок различного назначения, обогрева зданий и сооружений, в качестве бытового газа. При этом на биогаз могут быть конвертированы как бензиновые двигатели с принудительным воспламенением рабочей смеси, так и дизельные двигатели. Однако сжигание биогазового топлива в дизельных двигателях при высоких степенях сжатия и повышенных коэффициентах избытка воздуха более эффективно, чем в двигателях с принудительным воспламенением

В ВятГУ ведутся работы по использованию альтернативных топлив на транспорте. С этой целью в сотрудничестве с ООО «СельхозБио-Газ», г. Киров были проведены исследования состава биогаза.

Компания «СельхозБиоГаз» занимается разработкой и производством оборудования для переработки органического сырья и отходов предприятий. Эффективные технологии переработки отходов применимы для ферм КРС, птицефабрик, свиноферм, очистных сооружений, овощебаз, спиртзаводов, сахароперерабатывающих заводов. В ходе работы оборудования подготовленные отходы преобразуются в биогаз и биологические удобрения.

В основе биогазовой технологии лежит процесс биохимической и термической обработки предварительно подготовленных отходов в бескислородной среде под влиянием определенных видов бактерий. Органические соединения (белки, жиры, углеводы), которые присутствуют в биомассе, начинают распадаться на простейшие органические соединения (аминокислоты, сахара, жирные кислоты) под действием гидролитических ферментов.

Внешний вид экспериментального биогазового реактора производства ООО «СельхозБиоГаз», используемого в ПСПК «Истобенский» (с. Истобенск Оричевского района Кировской области) представлен на рис. 1.

Рис. 1. Биогазовый реактор производства ООО «СельхозБиоГаз»

В результате использования биогазовой технологии получается биогаз, содержащий до 70 % метана и жидкий эффлюент.

Биогаз можно использовать для получения тепловой или электрической энергии. Путем удаления двуокиси углерода ${\rm CO_2}$ и прочих примесей, биогаз можно преобразовать в биометан и использовать в качестве моторного топлива.

Эффлюент применяется в качестве органического удобрения, при необходимости с помощью сепаратора делится на твердую и жидкую фракции.

Компонентный состав биогаза определяется по ГОСТ 14920-79 «Газ сухой. Метод определения компонентного состава». Сущность метода заключается в газожидкостной и газоадсорбционной хроматографии газа с использованием детектора по теплопроводности. Углеводороды C_1-C_5 , двуокись углерода CO_2 и сероводород H_2S разделяют методом газожидкостной хроматографии. Неуглеводородные компоненты (водород H_2 , кислород O_2 , азот N_2 , окись углерода CO) и метан CH_4 разделяют методом газоадсорбционной хроматографии.

Состав биогаза после системы очистки, входящей в комплекс перерабатывающего оборудования, представлен в табл. 1.

Наименование компонента	Формула	Молярные доли, %	Массовые доли, %	Площадь, у. е.
Сероводород	H ₂ S	0,0000	0,0	0,0
Кислород	O_2	1,3881	1,7149	407,9
Азот	N_2	5,8881	6,3419	1650,0
Метан	CH ₄	61,1161	37,895	14305
Двуокись углерода	CO_2	31,6161	54,01	7688,6
Пропан	C_3H_8	0,0018	0,0031	77,665
и-бутан	u-C ₄ H ₁₀	0,0010	0,0023	58,154
н-бутан	μ -C ₄ H ₁₀	0,0024	0,0055	138,21
и-пентан	u-C ₅ H ₁₂	0,0014	0,0041	100,74
н-пентан	н-C ₅ H ₁₂	0,0015	0,0046	113,32
Гексан	C_6H_{14}	0,0055	0,0182	453,78
	Сумма:	100,00	100,00	24993

Таблица 1. Компонентный состав биогаза

Качество биогаза определяется, в первую очередь, содержанием метана, либо соотношением горючего метана CH_4 к «бесполезной» двуокиси углерода CO_2 . Двуокись углерода разбавляет биогаз и вызывает потери при его хранении. Поэтому важно стремиться к высокому содержанию метана и как можно низкому содержанию двуокиси углерода.

Также по компонентному составу и известным физическим величинам чистых компонентов, в соответствии с ГОСТ 22667-82 «Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе», были рассчитаны параметры биогаза. Результаты приведены в таблице 2.

Таблица 2. Характеристика биогаза по ГОСТ 22667-82

Свойства газа	T = 20 °C	Размерность
Относительная плотность	0,8944	б.р.
Низшая теплота сгорания	4881,5	Ккал/м ³
Число Воббе низшее	5161,5	Ккал/м ³
Высшая теплота сгорания	5419,7	Ккал/м ³
Число Воббе высшее	5730,5	Ккал/м ³
Коэффициент сжимаемости	0,9974	б. р.

Заключение.

- 1. Компонентный состав исследуемого газа удовлетворяет средним показателям биогаза, указанным в различных источниках.
- 2. Возможно применение биогаза в качестве добавки к моторному топливу.
- 3. Окончательные результаты могут быть сделаны на основе стендовых испытаний.

ЛИТЕРАТУРА

- 1. Определение количественных характеристик двигателя бытовой электростанции при использовании генераторного газа в качестве альтернативного топлива / С. А. Плотников [и др.] // Проблемы региональной энергетики. 2017. № 2 (34). С. 105–111.
- 2. Исследование работы автотракторного дизеля 4ЧН 11,0/12,5 на смесях дизельного топлива с рапсовым маслом / С. А. Плотников [и др.] // Молочнохозяйственный вестник. 2017. № 1 (25). С. 110–118.
- 3. Система питания двигателя внутреннего сгорания генераторным газом: пат. на изобретение RU 2605870 от 11.09.2015 / С. А. Плотников [и др.].
- 4. Sridhar, G. Biomass derived producer gas as a reciprocating engine fuel-an experimental analysis / G. Sridhar, P. J. Paul, H. S. Mukunda // Biomass and Bioenergy. № 21. 2001. P. 61–72.
- 5. Эдер, Б. Биогазовые установки: практ. пособие / Б. Эдер, Х. Шульц; пер. с нем. Zorg Biogas. 1996. 2011. С. 65–68.
 - 6. https://shbiogaz.ru. Дата доступа: 19.11.2018.