ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ ПРОИЗВОДСТВА АСБЕСТОВЫХ ИЗДЕЛИЙ

К. С. ДОСАЛИЕВ 1 , PhD доктор В. Н. БОСАК 2 , д-р с.-х. наук, профессор Ж. АЛТЫБАЕВ 1 , PhD доктор Т. Т. ЗАУРБЕКОВ 1 , докторант

¹Южно-Казахстанский государственный университет им. М. Ауэзова, Шымкент, Республика Казахстан

² УО «Белорусская государственная сельскохозяйственная академия», Горки, Республика Беларусь

Введение. Асбест – это ряд тонковолокнистых минералов из класса силикатов, образующих агрегаты, которые состоят из тончайших гибких волокон. Существуют две основные группы таких минералов: серпентиновая (хризотил) и амфиболовая (крокидолит, амозит, антофиллит, тремолит и актинолит).

Крупнейшие месторождения асбеста расположены в Канаде, ЮАР, России и Казахстане. Достаточно крупные месторождения асбеста имеются также в Китае, США, Зимбабве, Италии, Франции, Японии, Австралии и некоторых других странах [1–3].

В мировой промышленности используют в основном хризотиласбест (около 95 % мировой добычи), который входит в состав более чем трех тысяч изделий в самых различных областях (кровельные и стеновые изделия, трубы, фасадные плиты, асбестотехнические и теплоизоляционные изделия, резинотехнические материалы, различные герметики, замазки, растворы и т. д.).

Основными потребителями, на долю которых приходится более 80 % мирового потребления хризотил-асбеста, являются Китай, Россия, Таиланд, Индия, Иран, Украина, Вьетнам, Индонезия, Бразилия и Узбекистан.

Из-за негативного воздействия на человека (асбестовая пыль относится к 1 группе канцерогенных веществ) производство и применение асбестовых изделий во многих странах ограничено. При этом серпентиновая группа асбестовых минералов (хризотил-асбест) оказывает меньшее отрицательное воздействие на здоровье человека в сравнении с амфиболовой группой, добыча минералов которой во многих странах запрещена [3–6].

На международном уровне Международным бюро труда разработана «Сводка правил по охране труда при использовании асбеста» (1984 г.), принята конвенция Международной организации труда (МОТ) № 162 «Об охране труда при использовании асбеста» (1986 г.), «Рекомендация 1986 года об асбесте» (№ 172, МОТ), а также Резолюция МОТ по асбесту (2006 г.).

Основная часть. В Республике Казахстан добычу хризотиласбеста производят в Костанайской области, месторождение Джетыгара АО «Костанайские минералы». Джетыгаринское (Житикаринское) месторождение в Казахстане занимает по запасам хризотил-асбеста пятое место в мире. АО «Костанайские минералы» имеет высокотехнологичное производство, что дает возможность не только поставлять материал на внутренний рынок, но и снабжать хризотилом страны СНГ и дальнего зарубежья. Предприятие отгружает не менее 400 тысяч т асбеста в год и является градообразующим предприятием г. Житикары. На производстве выпускаются различные строительные смеси с использованием хризотил-асбеста, а также добавки для дорожного строительства [7].

Житикаринское месторождение АО «Костанайские минералы» хризотил-асбеста открыто в 1916 г., разведочные работы начаты в 1930 г., разрабатывается месторождение с 1961 г.

Месторождение расположено в протерозойских гнейсах и графитовых кварцитах, связанных с массивом ультрамафитов. Рудное поле образовано пятью отдельными асбестовыми рудными телами, расположенными на глубине 600–800 м. Самое крупное из них (длина – 3200 м, мощность – 150–180 м) содержит около 85 % запасов. Промышленное содержание волокнистого асбеста в рудах 3,54–5,62 %, из них запасы хризотил-асбеста – 93 %. Около 80 % добываемого асбеста применяется в изготовлении асбоцементных изделий, используемых в энергетике, химии, целлюлозно-бумажной промышленности.

В настоящее время основными потребителями хризотил-асбеста Житикаринского месторождения в Республике Казахстан являются Карагандинский завод асбестоцементных изделий, Семипалатинский и Шымкентский шиферные заводы.

Карагандинский завод асбестоцементных изделий выпускает волнистый шифер CB-40-1750, плоский шифер, асбестоцементные трубы, железобетонные плиты, шлакоблочные изделия, а также облицовочные кирпичи. Выпускаемая продукция поставляется не только в регионы Республики Казахстан, но и в соседние Узбекистан и Таджикистан.

В советское время в Казахстане действовало три завода по производству шифера, однако производство на них было приостановлено. Поэтому рынок наполнился более дорогими кровельными материалами. Рынку потребовалось время, чтобы выровнять спрос и предложение. У населения есть потребность не только в дорогих кровельных материалах, но и в недорогом шифере, что привело к наводнению рынка российской и китайской продукцией. Но из-за количества боя и низкокачественных отдельных партий привозимого кровельного материала возникла потребность в качественном и недорогом местном шифере. Примером собственного производства асбестовых изделий является соседний Узбекистан, где работает около 20 шиферных заводов и спрос на данный кровельный материал очень высок (около 35 млн. листов шифера в год).

Наличие собственной сырьевой базы и потребность в шифере способствовали возрождению в Казахстане производства хризотилцементного шифера. Сейчас шифер в Казахстане выпускают на двух современных заводах в Семее (ТОО «Семипалатинский завод асбоцементных изделий») и Шымкенте (ТОО «Тесtum Engineering»). Ежегодно в Казахстане потребляется около 5 млн. листов шифера в год, из них в прошлом году казахстанские предприятия выпустили 2,5 млн. листов шифера. Наиболее крупными потребителями шифера в Казахстане являются южные регионы, что объясняется как более жаркими климатическими условиями, так и более традиционным укладом жизни местных жителей.

Следует, однако, помнить, что производство и применение асбестовых изделий требует строгого соблюдения мер охраны труда. При работе с асбестовыми волокнами, как и с другими видами пылеобразующих материалов, необходимо контролировать уровень запыленности и соблюдать допустимые концентрации вредных веществ в воздухе рабочей зоны. Из общих мер защиты следует отметить необходимость наличия общей вентиляции и аспирации рабочих мест, использование индивидуальных средств защиты, регулярное проведение влажной уборки рабочего помещения [4, 8–11].

Заключение. Потребность Республики Казахстан в недорогих асбестовых изделиях, в том числе кровельном шифере, а также наличие в стране крупного месторождения хризотил-асбеста обусловило расширение его добычи и производства местного шифера.

При производстве и применении асбестовых изделий необходимо придерживаться международных рекомендаций по охране труда при

работе с асбестом, на основе которых следует разработать соответствующие национальные правовые акты.

ПИТЕРАТУРА

- 1. Возможно ли безопасное использование хризотилового асбеста? Опыт Украины / В. И. Чернюк [и др.]. Киев, 2008. 36 с.
- 2. Нейман, С. М. О безопасности асбестоцементных материалов и изделий / С. М. Нейман, А. И. Везенцев, С. В. Кашанский. Москва: Стройматериалы, 2006. 63 с.
- 3. Сперанская, О. Асбест: реальность, проблемы, рекомендации / О. Сперанская, О. Цыгулева, Л. Астанина. Астана-Москва-Киев, 2008. 55 с.
- 4. Безопасность и здоровье при производстве асбеста и других волокнистых материалов. Асбест: Асбестовая ассоциация, 2003. 176 с.
- 5. Ковалевский, Е. В. Нормативно-методическое обеспечение безопасного контролируемого использования хризотил-асбеста в России / Е. В. Ковалевский, С. В. Кашанский // Медицина труда и промышленная экология. 2011. № 5. С. 4–48.
- 6. Оценка индуцированного мутагенеза у рабочих хризотил-асбестового производства / Г. С. Жумабекова [и др.] // Медицина труда и промышленная экология. -2014. − № 8. С. 18-22.
- 7. Житикаринское месторождение хризотил-асбеста / Казахстан. Национальная энциклопедия. Алматы: Қазақ энциклопедиясы, 2005. Т. II.
- 8. Бацукова, Н. Л. Безопасные условия труда при работе с асбестом / Н. Л. Бацукова // Охрана труда. 2016. 2
- 9. Босак, В. Н. Безопасность жизнедеятельности человека / В. Н. Босак, З. С. Ковалевич. Минск: Вышэйшая школа. 2016. 335 с.
- 10. Босак, В. Н. Охрана труда в агрономии / В. Н. Босак, А. С. Алексеенко, М. П. Акулич. Минск: Вышэйшая школа, 2019. 317 с.
- 11. Кашанский, С. В. Динамика запыленности воздуха рабочих зон при добыче руды на Баженовском месторождении хризотил-асбеста / С. В. Кашанский, С. Г. Домнин // Медицина труда и промышленная экология. 2003. № 12. С. 40–41.

УДК 665.753:622.747.4

ДЫМНОСТЬ ОТРАБОТАВШИХ ГАЗОВ ДИЗЕЛЕЙ И ПУТИ ЕЕ УМЕНЬШЕНИЯ

Е. Д. ПЕТУХОВИЧ, студент Г. М. КУХАРЕНОК, д-р техн. наук, профессор УО «Белорусский национальный технический университет», Минск, Республика Беларусь

Двигатели внутреннего сгорания (ДВС), представленные в основном бензиновыми двигателями и дизелями, в настоящее время находятся вне конкуренции по отношению к известным альтернативным