МЕТОДИКА ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЙ РАБОЧИХ ОРГАНОВ ДЛЯ ВНУТРИПОЧВЕННОГО ВНЕСЕНИЯ ЖИДКИХ УДОБРЕНИЙ

Е. М. ШАЛЫПИНА, магистрант В. И. КОЦУБА, канд. техн. наук, доцент

УО «Белорусская государственная сельскохозяйственная академия», Горки, Республика Беларусь

Введение. Одним из перспективных направлений повышения урожайности сельскохозяйственных культур является внутрипочвенное внесение жидких удобрений. Существенным их преимуществом является обеспечение растений легкодоступными элементами питания на протяжении всего периода вегетации, что особенно важно в засушливые годы [2–11, 14, 16, 17].

Внутрипочвенное внесение жидких минеральных удобрений позволит обеспечить полноценное питание растений в различные периоды вегетации. В результате создаются условия для наиболее полного использования потенциала почвы и повышается урожайность возделываемых культур. Для внутрипочвенного внесения могут применяться минеральные, органические и комплексные жидкие удобрения. Внесение жидких минеральных удобрений требует точного соблюдения дозировок, так как превышение дозировки приводит к негативным последствиям вплоть до гибели растения.

В последнее время широкое распространение для внутрипочвенного внесения жидких минеральных удобрений получили ликвилайзеры. Рабочими органами ликвилайзера являются колеса с иглами-инъекторами, которые перекатываясь по поверхности поля, прокалывают почву и вводят жидкость на нужную глубину [15, 18].

Однако проблемой остается обеспечение равномерности их внесения по глубине, особенно при подкормке растений, а также исключение выноса удобрений на поверхность при использовании ротационных рабочих органов. Поэтому необходимы дополнительные исследования по обоснованию рабочих органов с целью повышения эффективности внутрипочвенного внесения жидких удобрений.

Цель работы – теоретически обосновать количество инъекторов на рабочем колесе, разработать программу и методику лабораторных исследований, а также разработать лабораторную установку для иссле-

дования параметров инъекторов для внутрипочвенного внесения жидких удобрений.

Материалы и методика исследований. Когда рабочее колесо перекатывается по поверхности поля, инъекторы погружаются в почву. Количество инъекторов, одновременно заглубленных в почву, определяется исходя из диаметра рабочего колеса, высоты инъектора и количества инъекторов на рабочем колесе (рис. 1).

Угол ф между вертикальной осью рабочего колеса и инъектором в точке касания почвы определяется по формуле [1, 15, 17]

$$\varphi = \arccos\left(\frac{R}{R+h}\right),\tag{1}$$

где R — радиус рабочего колеса, м; h — высота инъектора, м.

сота инъектора, м.

$$\varphi = \arccos\left(\frac{0,30}{0,30+0,08}\right) = 37,9^{\circ}(0,6616 \text{ радиан}),$$

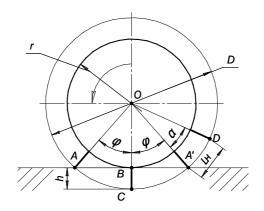


Рис. 1. Схема движения рабочего колеса

Угол α между двумя соседними инъекторами определяется по формуле:

$$\alpha = \frac{2\pi}{N},\tag{2}$$

где N – количество инъекторов на рабочем колесе, шт.

$$\alpha = \frac{2 \cdot 3,14}{12} = 0,523 \text{ pag}(29,97^\circ),$$

В свою очередь количество инъекторов на рабочем колесе определяется исходя из необходимого расстояния между точками внесения удобрения:

$$N = \frac{\pi \left(D + 2h\right)}{L_{u}},\tag{3}$$

где D – диаметр рабочего колеса, м;

 $L_{\rm H}$ – линейное расстояние между концами инъекторов, равное расстоянию между точками внесения удобрений, м.

$$N = \frac{3,14 \cdot (0,6+2 \cdot 0,08)}{0.20} = 11,9. \text{ Принимаем } N = 12.$$

Количество инъекторов, заглубленных в почву, определим делением удвоенного угла в точке касания инъектором почвы на угол между двумя смежными инъекторами:

$$n = \frac{2\phi}{\alpha} = \frac{N \arccos\left(\frac{R}{R+h}\right)}{\pi}.$$

$$n = \frac{12 \cdot 0,6616}{3.14} = 2,53.$$
(4)

Анализ уравнений показал, что угол касания инъектором почвы и количество заглубленных инъекторов уменьшаются с увеличением радиуса рабочего колеса. Количество заглубленных инъекторов влияет на равномерность внесения удобрений, усилие заглубления и тяговое сопротивление рабочих колес.

На этапе лабораторных исследований ставится задача получить математическую модель процесса внутрипочвенного внесения жидких удобрений и определить рациональные конструктивные и технологические параметры разрабатываемых рабочих органов. Основным критерием при проведении исследований являются производительность процесса внутрипочвенного внесения жидких удобрений при соблюдении агротехнических требований.

Программа лабораторных исследований включает изучение физико-механических свойств жидких удобрений как материала для работы

инъекторов, обоснование интервалов и уровней варьирования основных факторов для проведения дальнейших исследований процесса внутрипочвенного внесения жидких удобрений, а также определение рациональных значений параметров инъекторов и получение математической модели процесса внесения жидких удобрений [12, 13].

В дальнейшем проводятся полевые испытания для проверки результатов теоретических и лабораторных исследований в производственных условиях, а также проведения сравнительной оценки предлагаемого аппарата для внутрипочвенного внесения жидких удобрений с существующими аппаратами.

Для проведения лабораторных исследований процесса внутрипочвенного внесения жидких удобрений была изготовлена лабораторная установка (рис. 2).

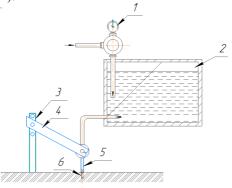


Рис. 2. Лабораторная установка для исследования внутрипочвенного внесения жидких удобрений: 1 – манометр; 2 – бак; 3 – стойка; 4 – кронштейн с отверстием; 5 – шланг; 6 – инъектор

Лабораторная установка состоит из установленного на раме установки бака 2 с раствором жидких минеральных удобрений. На стойке 3 с кронштейном 4 смонтирован сменный инъектор 6, который имеет возможность погружаться в слой почвы на различную глубину и под различным углом. Раствор из бака 2 под давлением через шланг 5 подается в инъектор и впрыскивается в почву. Различное давление в баке обеспечивается за счет компрессора и контролируется по манометру 1.

Конструкция лабораторной установки позволяет в необходимых пределах изменять следующие параметры: давление воздуха, поступающего в бак; глубину вхождения инъектора в почву; угол вхождения инъектора в почву; диаметр отверстия инъектора.

Экспериментальные исследования проводятся по шести факторам, области изменения которых определяются исходя из конструктивных и технологических соображений. По мере исследования каждого фактора дальнейшие эксперименты проводятся при фиксировании исследованного фактора на уровне, соответствующем наилучшему значению параметра оптимизации [12, 13].

Опыты по исследованию параметров предлагаемого аппарата для внутрипочвенного внесения жидких удобрений выполняются по нижеприведенной методике.

Бак заполняется раствором, с помощью компрессора в баке создается требуемое давление, измеряемое манометром. На кронштейн устанавливается инъектор с исследуемым диаметром отверстия и заглубляется в почву на требуемую глубину и под требуемым углом. После чего открывается кран и раствор из бака через инъектор подается в почву. При проведении опытов измеряется расход рабочего раствора, глубина и площадь его внесения в почву по размерам пятна влажной почвы. Каждый опыт проводится в трехкратной повторности.

Заключение. Теоретические исследования рабочих органов для внутрипочвенного внесения жидких удобрений показали, что угол касания инъектором почвы и количество заглубленных инъекторов уменьшаются с увеличением радиуса рабочего колеса. Количество заглубленных инъекторов влияет на равномерность внесения удобрений, усилие заглубления и тяговое сопротивление рабочих колес.

Разработана программа и лабораторная установка для выполнения лабораторных исследований инъекторов для внутрипочвенного внесения жидких удобрений. Конструкция лабораторной установки позволяет в необходимых пределах изменять следующие параметры: давление воздуха, поступающего в бак; глубину вхождения инъектора в почву; угол вхождения инъектора в почву; диаметр отверстия инъектора. Параметрами для оценки качества внесения удобрений являются расход рабочего раствора, глубина и площадь его внесения в почву

ЛИТЕРАТУРА

- 1. Бронштейн, И. Н. Справочник по математике для инженеров и учащихся вузов / И. Н. Бронштейн, К. А. Семендяев. Москва: Наука, 1986. 554 с.
- 2. Козловская, И. П. Производственные технологии в агрономии / И. П. Козловская, В. Н. Босак. Москва: ИНФРА-М, 2016. 336 с.
- 3. Лапа, В. В. Влияние форм азотных удобрений на урожайность и качество сахарной свеклы / В. В. Лапа, В. Н. Босак, О. Ф. Смеянович // Состояние и пути развития производства сахарной свеклы в Республике Беларусь. Минск, 2003. С. 98–99.

- 4. Лапа, В. В. Минеральные удобрения и пути повышения их эффективности / В. В. Лапа, В. Н. Босак. Минск, 2002. 184 с.
- 5. Лапа, В. В. Применение жидких удобрений Адоб и Басфолиар в технологиях возделывания озимых культур / В. В. Лапа, М. В. Рак, В. Н. Босак // Белорусское сельское хозяйство. -2006. -№ 9. -C. 44–45.
- 6. Лапа, В. В. Эффективность различных форм азотных удобрений при возделывании сельскохозяйственных культур на дерново-подзолистой легкосуглинистой почве / В. В. Лапа, В. Н. Босак // Почвоведение и агрохимия. 2002. № 32. С. 69–79.
- 7. Лапа, В. Применение жидких удобрений в технологиях возделывания озимых культур / В. Лапа, М. Рак, В. Босак // Главный агроном. 2008. № 7. С. 15–17.
- 8. Максимова, С. Л. Применение жидких гуминовых удобрений на основе биогумуса в интенсивном земледелии / С. Л. Максимова, В. Н. Босак, Е. Г. Лузин. Минск, 2014. 14 с.
- 9. Применение однокомпонентных и комплексных удобрений / В. Н. Босак [и др.]. Минск: БГТУ, 2018.-30 с.
- 10. Применение органических удобрений в интенсивном земледелии / И. Р. Вильдфлуш [и др.]. – Горки: БГСХА, 2015. – 50 с.
- 11. Рак, М. В. Удобрения Эколист на посевах озимых зерновых культур / М. В. Рак, В. Н. Босак, В. С. Бобер // Белорусское сельское хозяйство. 2004. № 10. С. 7–8.
- 12. Рогов, В. А. Методика и практика технических экспериментов / В. А. Рогов, Г. Г. Позняк. Москва: Академия, 2005. 283 с.
- 13. Спирин, Н. А. Методы планирования и обработки результатов инженерного эксперимента / Н. А. Спирин, В. В. Лавров. Екатеринбург, 2004. 257 с.
 - 14. Справочник агрохимика / В. В. Лапа [и др.]. Минск, 2007. 390 с.
- 15. Теоретическое обоснование конструктивных параметров рабочих органов для внутрипочвенного внесения жидких удобрений / В. И. Коцуба, В. В. Пузевич, Е. М. Шалыпина, В. М. Кузюр // Конструирование, использование и надежность машин сельскохозяйственного назначения. 2023. № 1 (22). С. 238–244.
- 16. Шалыпина, Е. М. Анализ рабочих органов машин для внутрипочвенного внесения жидких удобрений / Е. М. Шалыпина, В. И. Коцуба // Инновационные решения в технологиях и механизации сельскохозяйственного производства. Горки: БГСХА, 2023. Вып. 8. С. 193—197.
- 17. Шалыпина, Е. М. Теоретическое обоснование движения рабочих органов для внутрипочвенного внесения жидких удобрений / Е. М. Шалыпина, В. И. Коцуба // Актуальные вопросы механизации сельскохозяйственного производства. Горки: БГСХА, 2023. С. 78–80.
- 18. Duport Liquiliser [Электронный ресурс]. Режим доступа: https://duport.eu/ resources/image/files/Folder%20Duport%20Liquiliser%20april%202022%20EN%2028042022%20mailversie.pdf. Дата доступа: 27.10.2023.

Аннотация. Проведены теоретические исследования применения игольчатых дисков с полыми иглами-инъекторами для внутрипочвенного внесения жидких удобрений. Разработана установка для лабораторных исследований инъекторов.

Ключевые слова: жидкие минеральные удобрения, внутрипочвенное внесение, рабочие органы, инъекторы, лабораторная установка.