РАСЧЕТ ПОДОГРЕВАТЕЛЯ ТОПЛИВА СИСТЕМЫ ПИТАНИЯ ДИЗЕЛЯ В УСЛОВИЯХ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУР

А. В. ГОРДЕЕНКО, канд. техн. наук, доцент П. А. КАЛЬЯНОВ, В. В. ЧАЧУЕВ, студенты

УО «Белорусская государственная сельскохозяйственная академия», Горки, Республика Беларусь

Введение. Одна из важнейших эксплуатационных характеристик дизельного топлива (ДТ) – его низкотемпературные свойства, характеризующие его подвижность при отрицательной температуре.

Низкая температура окружающей среды вызывает выпадение из топлива высокоплавких углеводородов (зависящих главным образом, от фракционного состава дизельного топлива [2]) в виде кристаллов различной формы [1], которые способны забивать фильтрующие элементы, узкие места в системе питания дизеля.

Методика исследований. Для гарантированного пуска дизеля в условиях низких температур (ниже температуры помутнения топлива) необходимо предварительно обеспечить разогрев электронагревательного элемента. В данной работе определим время, за которое электронагревательный элемент разогревается до необходимой температуры T_H в неподвижном объеме топлива при постоянной силе тока I, если в начальный момент времени температура нагревательного элемента T_H и температура топлива T_T равны.

Количество теплоты, выделившейся в нагревательном элементе dQ_H , при прохождении тока величиной I за время $d\tau$ определяется выражением [6]:

$$dQ_H = dQ_M + dQ_O, (1)$$

где dQ_M – количество теплоты, идущее на изменение теплосодержания материала нагревательного элемента за время $d\tau$;

 dQ_{0} – количество теплоты, отдаваемое нагревательным элементом дизельному топливу за время $d\tau$.

По закону Джоуля-Ленца за время $d\tau$ в нагревательном элементе выделяется количество теплоты, которое можно определить:

$$dQ_H = I^2 R_H d\tau \,, \tag{2}$$

где R_H — электрическое сопротивление нагревательного элемента — функция, линейно зависящая от температуры, и может быть определена по формуле [6]:

$$R_H = R_{293} \left[1 + \alpha \left(T_H - 293 \right) \right], \tag{3}$$

где R_{293} – сопротивление нагревательного элемента при температуре 293 °K;

 а – термический коэффициент сопротивления материала нагревательного элемента.

Количество теплоты, идущее на изменение теплосодержания материала нагревательного элемента за время $d\tau$:

$$dQ_{M} = C_{M} m_{H} \left(\frac{dT_{H}}{d\tau} \right) d\tau , \qquad (4)$$

где C_M – теплоемкость материала нагревательного элемента;

 m_{H} – масса нагревательного элемента.

Количество теплоты, отдаваемое за время $d\tau$ дизельному топливу:

$$dQ_0 = \alpha_H \left(T_H - T_T \right) A d\tau \,, \tag{5}$$

где α_H – коэффициент теплоотдачи от нагревательного элемента дизельному топливу в неподвижном объеме;

A — площадь теплообмена.

Подстановкой в (1), уравнений (2), (4) и (5), с учетом (3), после преобразований, получим:

$$\frac{C_{M}m_{H}}{I^{2}R_{293}\alpha-\alpha_{H}A}ln\Big[I^{2}R_{293}\left(1-293\alpha\right)+T_{H}\left(I^{2}R_{293}\alpha-\alpha_{H}A\right)+\alpha_{H}AT_{T}\Big]=\tau+C\;,\;(6)$$

где C – постоянная интегрирования.

С учетом начальных условий ($\tau = 0$; $T_H = T_T$), постоянная интегрирования определяется:

$$C = \frac{C_M m_H}{I^2 R_{293} \alpha - \alpha_H A} ln \left[I^2 R_{293} \left(1 - 293 \alpha \right) + I^2 R_{293} \alpha T_T \right].$$
 (7)

После подстановки формулы (7) в выражение (6) получим:

$$\tau = \frac{C_M m_H}{F} ln \frac{P + T_H F + \alpha_H A T_T}{P + I^2 R_{202} \alpha T_T}.$$
 (8)

В формуле (8) обозначено:

$$F = I^2 R_{293} \alpha - \alpha_H A, \qquad (9)$$

И

$$P = I^2 R_{293} (1 - 293\alpha). \tag{10}$$

По формуле (8) может быть определено время предпусковой работы подогревателя для обеспечения бесперебойной подачи дизельного топлива к топливному насосу высокого давления при пуске дизеля.

Коэффициент теплоотдачи определяем из формулы [6]:

$$\alpha_H = \frac{Nu\lambda_T}{l_o},\tag{11}$$

где Nu — число Нуссельта;

 λ_{T} – коэффициент теплопроводности дизельного топлива;

 l_o – характерный линейный размер нагревательного элемента.

Число Нуссельта, для замкнутого объема, определяется по формуле [6]:

$$Nu = 0.52Ra^{0.25}, (12)$$

где *Ra* – число Рэлея.

Число Рэлея определяется по формуле [6]:

$$Ra = \frac{gl_o c \rho_T}{v \lambda_T} \psi \Delta T , \qquad (13)$$

где ρ_T – плотность дизельного топлива;

v – кинематическая вязкость дизельного топлива;

 ψ – коэффициент объемного термического расширения дизельного топлива;

 ΔT – характерная разность температур;

c — средняя теплоемкость дизельного топлива в интервале ΔT .

Необходимая температура нагревательного элемента T_H , определяется из условия, что при максимальной скорости движения топлива на входе в нагревательный элемент с начальной температурой T_T оно на выходе должно иметь требуемую температуру T_B :

$$T_{H} = \frac{Ac_{T}\rho_{T}\vartheta(T_{B} - T_{T}) + \overline{\alpha}_{H}AT_{T}}{\overline{\alpha}_{H}A}, \qquad (14)$$

- где 9 максимальная скорость дизельного топлива при прохождении через нагревательный элемент;
 - $\overline{\alpha}_{H}$ средний коэффициент теплоотдачи от нагревательного элемента к дизельному топливу при скорости \mathcal{G} ;
 - $c_{\rm T}$ текущая теплоемкость дизельного топлива, определяется согласно методике [7];
 - T_B требуемая температура, до которой должно быть нагрето дизельное топливо [5].

$$T_{B} \ge \frac{1}{\beta} ln \frac{V_{o} \left(N + 64 \ell \mathcal{G}_{TP}\right)}{2d_{TP}^{2} \left(M + \frac{P_{BAK}}{\rho_{T}} + R - K\right)} + T_{T}.$$

$$\tag{15}$$

Численные значения коэффициентов, входящих в выражение (15), определяются по зависимостям:

$$N = d_{TP}^2 \sum_{i=1}^n \frac{\mathcal{G}_i A_i}{\ell_{oi}}, \tag{16}$$

$$M = g(H + Z_1 - Z_2), (17)$$

$$R = \theta_2^2 \left(\frac{\omega_2^2}{\omega_l^2} - I \right),\tag{18}$$

$$K = \frac{1}{2} \sum_{i=1}^{n} \xi_{KB,i} \mathcal{G}_{i}^{2} , \qquad (19)$$

- где β коэффициент, численное значение которого для дизельного топлива изменяется в пределах 0,025...0,03 [6];
 - v_o кинематическая вязкость дизельного топлива при +20 °C (293 °K);
 - l суммарная длина трубопроводов от бака до топливоподкачивающего насоса;
 - d_{TP} диаметр трубопровода;
 - ϑ_{TP} средняя скорость движения топлива по трубопроводам;
 - $P_{
 m BAK}$ максимальное вакуумметрическое давление, создаваемое топливоподкачивающим насосом;
 - 9_i средняя скорость топлива в i-м элементе системы питания дизеля:
 - A_{i} коэффициент *i*-го сопротивления системы питания дизеля;

 l_{oi} – определяющий размер *i*-го местного сопротивления;

H – высота столба топлива в баке;

 Z_1, Z_2 – соответственно высота расположения выхода из топливного бака и входа в топливоподкачивающий насос;

 9_2 – скорость топлива на входе в топливоподкачивающий насос;

 ω_1 , ω_2 – площади потока на выходе из топливного бака и на входе в топливоподкачивающий насос;

 $\xi_{\mathit{KB}.i}$ – коэффициент местного i-го сопротивления квадратичной области.

Результаты исследований. В результате расчетов по формуле (8), с учетом выражений (11), (14) и (15) построен график изменения времени предпусковой работы подогревателя в зависимости от температуры окружающей среды [4], установленного в фильтре грубой очистки дизеля Д-243, работающего на топливе ДТ-Е-К5 (Сорт F вид III) по СТБ 1658-2015 с температурами помутнения и застывания –5 °C и –15 °C соответственно (рис. 1). Сила тока в цепи подогревателя 10 А, напряжение между контактами – 12 В.

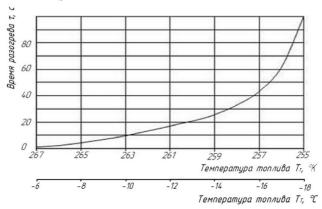


Рис. 1. Зависимость времени предпусковой работы подогревателя от температуры топлива

Согласно кривой, представленной на рис. 1, время предпускового включения подогревателя для температуры топлива -8 °C составляет 5 с, увеличивается до 45 с при температуре -16 °C. Дальнейшее снижение температуры ведет к резкому нарастанию времени разогрева. При температуре топлива -5 °C (температура помутнения топлива) предпусковое включение подогревателя не требуется.

Аналогичные кривые могут быть рассчитаны для разных марок дизелей, с установкой подогревателей в различных местах топливной системы и для конкретных сортов топлива. Таким образом, вышеизложенная методика может быть использована при конструировании различных электроподогревателей топливных систем дизелей.

Заключение. В работе получена теоретическая зависимость, позволяющая определить время предпусковой работы подогревателя, установленного в топливной системе дизеля, для обеспечения гарантированного пуска в условиях зимней эксплуатации.

На основании представленной методики произведен расчет времени предпускового включения электроподогревателя установленного в фильтре грубой очистки дизеля Д-243, в зависимости от температуры окружающей среды, работающего на топливе ДТ-Е-К5 (Сорт F вид III) по СТБ 1658-2015 с температурами помутнения и застывания –5 °C и –15 °C соответственно.

ЛИТЕРАТУРА

- 1. Улучшение пусковых качеств автотракторных дизелей в зимний период эксплуатации / А. Н. Карташевич [и др.]. Горки: БГСХА, 2005. 172 с.
- 2. Патент ВҰ № 1766 $\dot{\rm U}$ F 02M 31/00, F02N 17/00. Система облегчения работы дизеля при низких температурах / А. Н. Карташевич, А. В. Гордеенко, Д. С. Разинкевич.
- 3. Патент BU № 1767 U F 02B 77/00. Система защиты топливной аппаратуры дизеля / А. Н. Карташевич, А. В. Гордеенко, Д. С. Разинкевич.
- 4. Пат. 2007609 РФ, МКЙ F-02 М 31/12. Подогреватель дизельного топлива / А. Н. Карташевич, В. С. Бранцевич, В. Д. Прудников (Беларусь). № 4896914/ 06; Заявл. 26.12.90; Опубл. 15.02.94; Бюл. № 3.
- 5. Карташевич, А. Н. Определение пределов работоспособности топливной системы дизеля при отрицательных температурах / А. Н. Карташевич, В. С. Бранцевич, А. В. Гордеенко // Engineering. Mokslo darbai, Kaunas-Akademija, 1996. С. 131–138.
- 6. Кутателадзе, С. С. Теплопередача и гидродинамическое сопротивление / С. С. Кутателадзе. Москва: Энергоатомиздат, 1990. 367 с.
- 7. Карташэвіч, А. М. Цеплавы разлік фільтра грубай ачысткі паліва з награвальным элементам для дызельнага рухавіка / А. М. Карташэвіч, В. С. Бранцэвіч // Весці ААН Беларусі. $1993. \text{N} \cdot 2. \text{C}. 105-110.$

Аннотация. Приведены результаты теоретических исследований предпусковой работы электроподогревателя топливной системы дизельного двигателя, выполненные на основе использования уравнений теплотехники. Произведен расчет электронагревательного элемента, установленного в фильтре грубой очистки дизеля, и получена теоретическая зависимость времени разогрева топлива от его температуры.

Ключевые слова: дизельное топливо, низкотемпературные свойства, кристаллы парафинов, фракционный состав, подогреватель топлива.