ВЛИЯНИЕ БИОГАЗА В СМЕСЕВЫХ СОСТАВАХ С ДИЗЕЛЬНЫМ ТОПЛИВОМ НА ЭФФЕКТИВНЫЕ ПОКАЗАТЕЛИ ДИЗЕЛЯ

В. А. ШАПОРЕВ, аспирант

УО «Белорусская государственная сельскохозяйственная академия», Горки, Республика Беларусь

Введение. Одним из перспективных видов альтернативного моторного топлива является биогаз (БГ), индустрия которого появилась за короткий промежуток времени во многих странах мира. Если в 80-х годах прошлого века в мире насчитывалось около 8 млн. установок для получения БГ суммарной мощностью в 1,7-2 млрд. м³ в год, то в настоящее время данные показатели соответствуют производительности только одной страны – Китая [1...3].

Биогазовая технология может быть использована для переработки многих видов органических отходов, навоза, сточных вод и отходов сельскохозяйственных культур, улучшая экологическую обстановку местности.

В процессе переработки органических отходов в биогазовых установках получают два основных продукта — биоудобрение и БГ, которые можно использовать в сельскохозяйственном производстве и в быту [4,5].

Основная часть. Исследовались эффективные показатели работы дизеля при изменении нагрузки и работе на смесях 85 % ДТ + 15 % БГ, а также 70 % ДТ + 30 % БГ по внешней скоростной характеристике, снятой при рациональном значении угла опережения впрыскивания топлива $\Theta_{\text{оп.впр}} = 22^{\circ}$ до в.м.т. [6]. При проведении исследований ДТ замещалось БГ в процентном отношении по величине суммарной вводимой в цилиндры дизеля теплоты. Содержание БГ в объеме 15 % и 30 % было выбрано из условия наличия необходимого воздуха для обеспечения полноты процесса сгорания.

Влияние БГ в смесевых составах с ДТ на изменение эффективных показателей дизеля представлено на внешней скоростной характеристике (рис. 1).

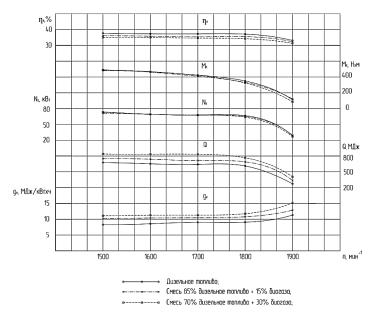


Рис. 1. Скоростная характеристика дизеля 4ЧН 11,0/12,5 при рациональном значении угла опережения впрыскивания топлива $\Theta_{\text{оп.впр}} = 22^{\circ}$ до в.м.т.

Из графика видно, что работа дизеля на смесях ДТ и БГ вызывает некоторые изменения его эффективных показателей. Так, кривые значений эффективного КПД снижаются в сравнении с аналогичной кривой для ДТ во всем диапазоне изменения частоты вращения коленчатого вала. Величина КПД при n=1800 мин $^{-1}$ составляет $\eta_e=37,2$ % для ДТ, а для случая смеси 85 % ДТ + 15 % БГ – $\eta_e=35$ % и, наконец, $\eta_e=34,1$ % для смеси 70 % ДТ + 30 %. Следовательно, эффективный КПД дизеля понижается с ростом замещения чистого ДТ биогазом на 5,91 % и 8,1 %.

Незначительное снижение эффективной мощности и крутящего момента дизеля с добавление БГ происходит по всему диапазону изменения частоты вращения коленчатого вала. При $n=1800~{\rm Muh}^{-1}$ мощность дизеля, работающего на ДТ, составляет $N_e=68~{\rm kBT}$, а на смесях 85~% ДТ + 15~% БГ и 70~% ДТ + 30~% БГ ее значение составляет $N_e=65~{\rm kBT}$ и $N_e=65~{\rm kBT}$ соответственно. Характерно: мощность незначительно уменьшается с замещением ДТ в процентном отношении на смесях 15~% БГ и 30~% БГ на 1,47~% и 4,41~%. Крутящий момент при $n=1800~{\rm kmh}^{-1}$ дизеля, работающего на ДТ, составляет $M_\kappa=363~{\rm H}\times_M$, а на смесях 15~% БГ и 30~% БГ его значение составляет $M_\kappa=354~$

 $H \times M$ и $M_{\kappa} = 344$ $H \times M$. Крутящий момент уменьшается с замещением ДТ на смесях 15 % БГ и 30 % БГ на 2,47 % и 5,23 %.

Снижение мощности, крутящего момента и эффективного КПД дизеля на смесях ДТ и БГ означает, что снизилась эффективность процесса сгорания (его скорость и полнота). Общее количество теплоты, вводимой в цилиндры дизеля, поддерживалось на одинаковом уровне, но вблизи ВМТ выделяется тепла меньше, дальше от ВМТ – больше. Количество тепла, выделяющегося вблизи ВМТ, как раз и определяет эффективность рабочего цикла.

Характер изменения потребного значения вводимой теплоты Q в цилиндры дизеля сопровождается ее ростом по всему диапазону изменения частоты вращения. Значения теплоты Q при n=1800 мин $^{-1}$ для ДТ и смесей 85 % ДТ + 15 % БГ и 70 % ДТ + 30 % составляют Q=616,25 МДж, Q=695,94 МДж и Q=738,08 МДж соответственно. Теплоты Q, вводимой в цилиндры дизеля при работе на смесях 85 % ДТ + 15 % БГ и 70 % ДТ + 30 % БГ, необходимо больше, чем для работы на чистом ДТ, на 12,93 % и 19,77 %.

Кроме того, из графика видно (рис. 1), что при работе дизеля на чистом ДТ значение удельного эффективного расхода теплоты g_e значительно меньше, чем на топливах с добавлением 15 % БГ и 30 % БГ. Так, при n =1800 мин $^{-1}$ и работе на ДТ удельный эффективный расход теплоты составляет g_e = 9,00 МДж/кВт·ч, для смесей с добавлением 15 % БГ и 30 % БГ его значения равны g_e = 10,44 МДж/кВт·ч и g_e = 10,61 МДж/кВт·ч. В отношении к ДТ этот рост равен 16 % и 17,88 %, соответственно, для смесей с добавлением 15 % БГ и 30 % БГ. Данное увеличение удельного эффективного расхода теплоты и общего потребного количества теплоты, вводимой в цилиндры дизеля, объясняется меньшим значением низшей расчетной теплоты сгорания БГ и замедлением скорости его сгорания по отношению к ДТ.

Заключение. Эффективные показатели дизеля 4ЧН 11,0/12,5 по внешней скоростной характеристике на смесевых составах 85 % ДТ + + 15 % БГ и 70 % ДТ + 30 % БГ относительно показателей работы дизеля на чистом ДТ при номинальном режиме $n = 1800 \text{ мин}^{-1}$ сопровождаются:

- 1) снижением мощности на 1,47 % и 4,41 %;
- 2) снижением крутящего момента на 2,47 % и 5,23 %;
- 3) снижением КПД на 5,91 % и 8,1 %;
- 4) увеличением потребной теплоты, вводимой в цилиндры, на 12,93 % и 19,77 %;
- 5) увеличением удельного эффективного расхода теплоты на $16\,\%$ и $17.88\,\%$.

ЛИТЕРАТУРА

- 1. Карташевич, А. Н. Применение этанолсодержащих топлив в дизеле. Ч. І / А. Н. Карташевич, С. А. Плотников, Г. Н. Гурков. Киров: Типография «Авангард», 2011.-116 с.
- 2. Карташевич, А. Н. Применение топлив на основе рапсового масла в тракторных дизелях / А. Н. Карташевич, С. А. Плотников, В. С. Товстыка. Киров: Типография «Авангард», 2014. 144 с.
- 3. Плотников, С. А. Система питания генераторным газом ДВС и установка для его осуществления / С. А. Плотников, А. С. Зубакин, А. Н. Коротков // Проблемы эксплуатации автомобильного транспорта и пути их решения на основе современных информационно-коммуникационных технологий: сб. науч. тр. по матер. заоч. науч.-практ. конф. Воронеж, 2015. С. 66–69.
- 4. Альтернативные виды топлива для двигателей / А. Н. Карташевич [и др.]. Горки: БГСХА, 2013.-376 с.
- 5. Альтернативные виды топлива для автотракторной техники: курс лекций / А. Н. Карташевич [и др.]. Горки: БГСХА, 2013. 60 с.
- 6. Система подачи газообразного топлива в дизель: пат. 9079 Респ. Беларусь, МПК F 02М 43/00 / А. Н. Карташевич, П. Ю. Малышкин, заявитель Белорус. гос. с-х. академия. № и 20120268; заявл. 05.09.2011; опубл.: 30.04.2013. // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2013. № 2. С. 188.

УДК 662.636

ВЫБОР ДИАМЕТРА ПРУТКОВ ТРАНСПОРТЕРА С ВОЛНООБРАЗНОЙ КОЛЕБЛЮЩЕЙСЯ СЕТЧАТОЙ ЛЕНТОЙ

Н. С. СЕНТЮРОВ, ст. преподаватель УО «Белорусская государственная сельскохозяйственная академия», Горки, Республика Беларусь

Введение. При производстве кондиционного льноволокна до 75 % сырья переходит в отходы – костру, паклю, пыль. Переработка отходов позволяет не только получать различного рода материалы и изделия и, следовательно, повысить эффективность производства, но и решить возникающие на льнозаводах экологические проблемы.

Среди отходов большую часть составляет костра. На льнозаводах ее образуется в два раза больше, чем производится волокна. Зачастую костру используют на льнозаводах в качестве топлива в связи с ее довольно высокой теплотворной способностью [1].

Поскольку Беларусь находится практически в полной зависимости от импорта энергоносителей, вместо традиционных ископаемых топлив целесообразно использовать возобновляемые энергоресурсы, которые в нашей республике представлены значительными запасами растительной биомассы. Однако растительная биомасса имеет много