путем сжигания с последующим анализом продуктов сгорания. Процесс сгорания сжигания исключает возможность оперативного контроля топлива непосредственно на технологической установке, бензоколонке, нефтебазе, в технологической трубе и топливном баке транспортного средства.

Наряду с отмеченными методами определения качества нефтепродуктов используются физические методы. Однако ни один из методов не позволяет с исчерпывающей полнотой определить показатели качества топлива. Лишь комбинируя методы, можно решить эту задачу. Перспективным направлением разработки приборов является электромагнитная техника, включающая электродинамику, оптоэлектронику, спектрометрию, акустику и магнитооптику, не применяющиеся пока при исследовании топлива.

За основу для разработки анализаторов и измерительных комплексов принимают корреляционные зависимости, связывающие величину эксплуатационного или потребительского свойства топлив с их физико-химическими характеристиками. Наряду с ДТ для оценки воспламеняемости альтернативных топлив предложено использовать аналогичные физико-химические методы.

Ключевые слова: двигатель, альтернативное топливо, экспресс анализ, эксплуатационные свойства.

УДК 621.43.057

АНАЛИЗ РАБОТЫ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ НА ВЫСОКОКОНЦЕНТРИРОВАННОЙ ЭТАНОЛО-ТОПЛИВНОЙ ЭМУЛЬСИИ

А. В. ПЛЯГО¹, аспирант М. Н. ВТЮРИНА², канд. хим. наук, доцент ¹ФГБОУ ВПО «Вятский государственный университет», Киров, Российская Федерация; ²ФГБОУ ВПО «Вятская государственная сельскохозяйственная академия», Киров, Российская Федерация

Введение. Применение альтернативного топлива из возобновляемых источников, наряду с базовым топливом ископаемого происхождения, является реалией наших дней по всему земному шару. Это – вопрос не только сохранения запасов ископаемого топлива, но и, в большей степени, сохранения и улучшения экологической обстановки на Земле.

В США на каждой заправочной станции продают, как топливо из ископаемых углеводородов, так и альтернативное жидкое топливо из возобновляемых источников. Такая же картина, и в Бразилии – в качестве возобновляемого источника используется спирт из сахарного тростника, смешиваемый с базовым топливом. Страны Евросоюза также, всячески поддерживают применение топлив из возобновляемых источников. Все эти инициативы поддерживаются на уровне правительства страны.

В Российской Федерации вопрос применения альтернативных жидких топлив находится в стадии становления. В ведущих вузах страны ведутся исследования по применению альтернативных видов топлива. Исследуются вопросы применения не только газообразного топлива, как в бензиновых, так и в дизельных двигателях, но и применения жидких топлив, таких как спирты, масла растительного происхождения.

Вопрос применения спиртов в качестве добавки к основному топливу ископаемого происхождения рассматривался уже достаточно давно, примерно с 1980 гг., еще при СССР, с новой силой этот вопрос возник уже в России и достаточно плотно исследуется с 2010 года различными вузами нашей страны [1].

Основная часть. Проведя анализ работ современников, мы приходим к заключению, что взор научного сообщества направлен на улучшение экологических показателей работы дизельного двигателя. Известно, что применение этанола ведет к более жесткой работе двигателя из-за взрывного характера горения этанола в камере сгорания двигателя. Присадки, применяемые сейчас, направлены больше на стабилизацию состава этаноло-топливной эмульсии, нежели на улучшение рабочих процессов, происходящих в цилиндре двигателя. Рассмотрев работы оппонентов, было решено пойти другим путем. Необходимо было предложить такую присадку, которая, наряду со стабилизацией этаноло-топливной эмульсии, привнесла бы значительное изменение процесса сгорания нового топлива, приближая параметры горения эмульсии к параметрам горения базового топлива, одновременно улучшая экологические показатели.

Коллективом молодых ученых ВятГУ была проделана значительная работа по поиску и апробации компонентов для присадки комплексного действия [9]. Результатом работы стала многокомпонентная присадка комплексного действия, которая не только является стабилизатором этаноло-топливной эмульсии, но также является ингибитором горения нового высококонцентрированного этанолсодержащего топлива [5, 7].

На следующем этапе были проведены исследования работоспособности топливоподающей аппаратуры на новой ЭТЭ [6]. Выявлено, что работа форсунок и топливного насоса высокого давления остаются в параметрах, установленных заводом изготовителем: заеданий плунжера, посторонних шумов, отказов в работе ТПА не выявлено.

Следующим этапом стали стендовые испытания двигателя на новом топливе с присадкой комплексного действия. В уже опубликованных работах описана эффективные и экологические показатели работы дизельного двигателя при работе по регулировочной, нагрузочных и скоростной характеристиках.

Исследование показателей процесса сгорания при работе дизеля на этаноло-топливной эмульсии с различным количеством этанола производилось с помощью индицирования на номинальном скоростном режиме с частотой вращения $n=1800~{\rm Muh}^{-1}$, а также на режимах с частотой вращения $n=1400~{\rm Muh}^{-1}$ и $n=2000~{\rm Muh}^{-1}$. На рис. 1 представлена индикаторная диаграмма работы дизельного двигателя на трех составах топлива: ДТ $-100~{\rm \%}$; ДТ $-79~{\rm \%}$ + этанол $-19~{\rm \%}$ + присадка комплексного действия $-2~{\rm \%}$ и ДТ $-49~{\rm \%}$ + этанол $-49~{\rm \%}$ + присадка комплексного действия $-2~{\rm \%}$.

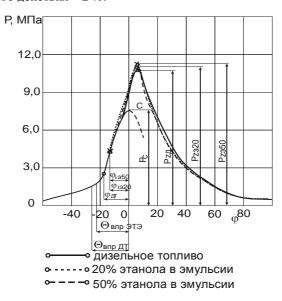


Рис. 1. Индикаторная диаграмма дизеля 4ЧН 11,0/12,5 при $n=1800~\mathrm{Muh}^{-1}$

Анализ полученных результатов показывает, что увеличение количества вводимого в эмульсию этанола ведет к увеличению угла ϕ_i , соответствующего периоду задержки воспламенения. Рост периода задержки воспламенения обуславливает накопление большого количества топлива, впрыскнутого в цилиндр за это время и увеличение скорости сгорания. В результате незначительно повышается жесткость процесса, этому способствует присадка комплексного действия, вводимая в ЭТЭ.

В составе применяемой присадки одним из компонентов является дисульфид молибдена MoS_2 (рис. 2). Известно, что содержание нафтенов в дизельном топливе составляет от 20 % до 60 %. В структуре MoS_2 имеется три типа атомов серы с разной координацией по молибдену. Часть ионов Мо локализована в частично недостроенных тригональных призмах – на торцевых гранях и углах слоев. Предположительно, кинетические цепи обрываются по реакциям пероксидных радикалов с дисульфидом молибдена на поверхности его частиц, что выражается в присоединении радикалов к «выступающим» атомам молибдена. В результате замедляется процесс окисления топлива. Процесс горения растягивается во времени, нарастание температуры и давления происходит более плавно, что эквивалентно увеличению цетанового числа.

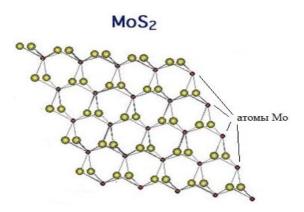


Рис. 2. Структура дисульфида молибдена

Кроме того, MoS_2 играет роль катализатора гидрокрекинга, который может происходить, например, согласно уравнению:

$$C_n H_{2n} + H_2 \rightarrow C_n H_{2n} + 2.$$
 (1)

Подобным образом при гидрировании циклопентана раскрывается цикл с образованием н-пентана. Так как при равном числе атомов углерода, цетановое число циклического углеводорода в среднем на 20–40 единиц меньше, чем у соответствующего алкана, это представляет собой частный случай общей тенденции повышения цетанового числа с ростом относительного числа атомов водорода (Н) в молекуле углеводорода [5].

Заключение. На основании проведенного исследования можно сделать следующие выводы:

- 1. С учетом современного наличия специальных присадок для спиртосодержащих топлив, объем замещаемого этанолом дизельного топлива в эмульсии следует ограничить на уровне 45...50 % массовой доли.
- 2. Относительное улучшение эффективных и экологических показателей дизеля при его работе на топливах с ростом присутствия до 50 % этанола (в массовых долях) постепенно снижается в сравнении с показателями, полученными при работе на топливе с меньшей его концентрацией.
- 3. Работа дизеля на топливах с содержанием этанола свыше 50–60 % в массовых долях потребует реализации дополнительных мероприятий, что может нивелировать полученный положительный эффект.

ЛИТЕРАТУРА

- 1. Альтернативные виды топлива для двигателей / А. Н. Карташевич [и др.]. Горки: БГСХА, 2013.-376 с.
- 2. Плотников, С. А. Улучшение эксплуатационных показателей дизелей путем создания новых альтернативных топлив и совершенствования топливоподающей аппаратуры: автореф. дисс. ... д-ра техн. наук / С. А. Плотников. Нижний Новгород: НГТУ, 2011.-40 с.
- 3. Карташевич, А. Н. Применение этанолсодержащих топлив в дизеле: монография / А. Н. Карташевич, С. А. Плотников, Г. Н. Гурков. Киров: Типография «Авангард», 2011. Ч. І. 116 с.
- 4. Карташевич, А. Н. Исследование свойств новых топлив на основе этанола / А. Н. Карташевич, С. А. Плотников, М. В. Смольников // Вестник БГСХА. 2017. № 1. С. 114–117.
- 5. В тюрина, М. Н. Исследование свойств этаноло-топливных эмульсий с присадками / М. Н. Втюрина, А. В. Пляго // Транспртные системы. 2017. № 2 (5). С. 51–54.
- 6. Носос-дозатор смесевого топлива / С. А. Плотников [и др.]. Патент РФ № 2639634 от 14.03.2017

- 7. Топливная эмульсия / С. А. Плотников [и др.]. Патент РФ № 2668225, МПК C10L.1/32.
- 8. Плотников, С. А. О применении спирто-топливных эмульсий в ДВС / С. А. Плотников, А. В. Пляго // Общество, наука, инновации. Киров: Науч. изд-во ВятГУ, 2017. С. 1861–1868.

Аннотация. Все более строгие экологические нормы заставляют производителей искать возможные варианты улучшения данных показателей. Комплекс мероприятий, ныне применяемый в двигателестроении, лишь частично решает вопрос об улучшении экологических показателей. В данный момент времени вариантом для сохранения и не ухудшения экологической обстановки на нашей планете видится применение новых топлив, более экологичных и менее токсичных. Этаноло-топливная эмульсия — один из возможных вариантов.

Представленная творческим коллективом топливная композиция прошла все испытания – от химических до стендовых. Последним этапом научных исследований будут полевые испытания.

Ключевые слова: дизель, этанол, альтернативное топливо, показатели работы двигателя.

УДК 621.87.93

ПОВОРОТНЫЙ ДВУХСЕКЦИОННЫЙ КОВШ ДЛЯ ОДНОКОВШОВЫХ ГИДРАВЛИЧЕСКИХ ЭКСКАВАТОРОВ

С. Г. РУБЕЦ, канд. техн. наук, доцент, И. С. МАТВЕЕЕВ, Р. А. ЛЯЦКИЙ, студенты УО «Белорусская государственная сельскохозяйственная академия», Горки. Республика Беларусь

Введение. Интенсивное развитие сельского, мелиоративного и дорожного строительства требует проведения большого объема земляных работ, при выполнении которых используются соответствующие машины, в том числе одноковшовые экскаваторы, так как они являются основной техникой при выполнении данного вида работ.

Около половины земляных работ в различных отраслях выполняют одноковшовыми гидравлическими экскаваторами, выпуск которых с каждым годом постоянно увеличивается [1].

Непрерывное совершенствование и оптимизация параметров и конструкции узлов и элементов экскаваторов направлено на обеспечение