Аннотация. Представлена конструкция очистного ковша, которая может быть использована на экскаваторах-погрузчиках.

Применение разработанной конструкции очистного ковша позволяет сократить время на переезды, что увеличивает производительность труда.

Ключевые слова: экскаватор, грунт, копание, ковш, очистка.

УДК 631.372

УЛУЧШЕНИЕ МАНЕВРЕННОСТИ КОЛЕСНОГО ТРАКТОРА С ПЕРЕДНИМИ УПРАВЛЯЕМЫМИ КОЛЕСАМИ ПОВОРОТОМ ПЕРЕДНЕГО МОСТА

А. А. РУДАШКО, канд. техн. наук, доцент УО «Белорусская государственная сельскохозяйственная академия», Горки, Республика Беларусь

Введение. Наиболее распространенным способом поворота колесных тракторов является поворот передних управляемых колес относительно остова трактора. Улучшение маневренности тракторов с колесными формулами 4К2 и 4К4а ограничено, в частности, предельными углами поворота управляемых колес, составляющими для большинства тракторов 35–40° и доходящими в ряде случаев до 50°.

Одним из способов улучшения маневренности колесных тракторов является сочетание поворота передних управляемых колес с одновременным поворотом переднего моста. Целью работы является исследование кинематики комбинированного поворота колес и моста.

Основная часть. Маневренность колесных машин оценивается минимальным радиусом поворота. Поворот передних управляемых колес является основным способом поворота автомобилей и тракторов с колесными формулами 4К2 и 4К4а (рис. 1).

Радиус поворота зависит от углов поворота левого α_2 и правого α_1 передних колес [1] и определится из треугольника *ABO* (рис. 1, *a*):

$$R = \frac{L}{\mathrm{tg}\alpha} = L\,\mathrm{ctg}\alpha\;,$$

где α – средний угол поворота управляемых колес, определяемый по формуле:

$$ctg\alpha = \frac{ctg\alpha_2 + ctg\alpha_1}{2}.$$

Чем больше угол поворота управляемых колес, тем меньше радиус поворота трактора. Величину минимального радиуса поворота можно уменьшить сочетанием схемы поворота с передними управляемыми колесами со схемой поворота с поворачивающимся передним мостом. С этой целью передний мост монтируется на остов трактора с вылетом L_2 таким образом, чтобы иметь возможность поворачиваться на угол β относительно точки C при повороте передних управляемых колес на средний угол α (рис. $1, \delta$).

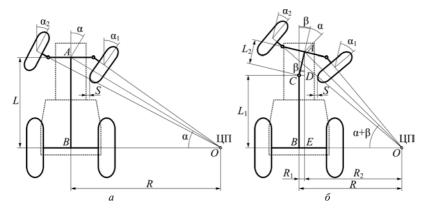


Рис. 1. Схема поворота колесного трактора: a — с передними управляемыми колесами; δ — с передними управляемыми колесами и поворачивающимся передним мостом

Радиус поворота трактора при повороте передних колес и переднего моста определится как сумма расстояний R_1 и R_2 :

$$R = R_1 + R_2. (1)$$

В свою очередь расстояние R_1 можно найти из треугольника ACD:

$$R_1 = L_2 \sin \beta , \qquad (2)$$

где β — угол поворота переднего моста.

Из треугольника AEO определяется расстояние R_2 с учетом того, что AE = DE + AD, $DE = L_1$, $AD = L_2 \cos \beta$:

$$R_2 = \frac{L_1 + L_2 \cos \beta}{\operatorname{tg}(\alpha + \beta)} \ . \tag{3}$$

Подставляя значения R_1 и R_2 из уравнений (2) и (3) в уравнение (1), получим значение радиуса поворота в зависимости от углов поворота колес и моста:

$$R = L_2 \sin \beta + \frac{L_1 + L_2 \cos \beta}{\operatorname{tg}(\alpha + \beta)}, \tag{4}$$

После преобразований уравнение (4) примет вид:

$$R = \frac{L_1 + L_2(\sin\beta \cdot \operatorname{tg}(\alpha + \beta) + \cos\beta)}{\operatorname{tg}(\alpha + \beta)}.$$
 (5)

Как следует из выражения (5), радиус поворота трактора по схеме (рис. $1, \delta$) зависит от суммы углов поворота колес α и моста β , называемой эффективным углом поворота колес. Наличие угла поворота моста β приводит к увеличению эффективного углом поворота колес и, как следствие, к улучшению маневренности колесного трактора.

Для улучшения маневренности трактора с передними управляемыми колесами необходимо увеличивать предельные углы поворота колес. При этом уменьшается расстояние S от внутреннего (ближайшего к центру поворота) колеса до остова трактора (рис. 1, a), что вынуждает производителей тракторов изменять конструкцию картера двигателя, делая его более узким, а также сужать остов трактора, делая нишу для повернутого на угол α_1 колеса [2].

При комбинированном повороте передних колес и моста, не смотря на увеличение суммарного угла поворота ($\alpha_1 + \beta$) внутреннего колеса, уменьшения расстояния S не происходит (рис. $1, \delta$), поскольку сближение колеса с остовом компенсируется смещением переднего моста в сторону поворота. В результате изменение ширины двигателя и остова трактора при увеличенных углах поворота колес не требуется. В свою очередь, боковое смещение моста обеспечивается вылетом моста относительно его центра поворота на величину L_2 .

По данным компании New Holland Agriculture [3], применение поворачивающегося передний моста SuperSteer на тракторах New Holland снижает минимальный радиус поворота на 11–13 % благодаря эффективному углу поворота колес до 76°. Так, на тракторе T4N при макси-

мальном среднем угле поворота передних колес $\alpha = 55^\circ$ и повороте переднего моста $\beta = 16^\circ$ эффективный угол поворота колес составляет $\alpha + \beta = 71^\circ$, что приводит к снижению минимального радиуса поворота с 3,4 м до 2,96 м, т. е. на 12,9 %.

Следует отметить, что реализация конструкции поворачивающего переднего моста с вылетом L_2 приводит к увеличению продольной базы трактора L (с $L=2093\,$ мм до $L=L_1+L_2=2348\,$ мм у трактора T4N), что, однако, не приводит к снижению маневренности. Более того, благодаря увеличенной колесной базе улучшается продольная устойчивость трактора с задними навесными машинами и уменьшается масса необходимых передних противовесов.

Заключение. Маневренность колесных тракторов 4К2 и 4К4 можно улучшить одновременным поворотом передних управляемых колеса на большой угол и поворотом переднего моста на небольшой угол. Применение комбинированного способа поворота снижает минимальный радиус поворота на 11–13 %.

Предложенные зависимости могут быть использованы для оценки маневренности трактора с передними управляемыми колесами и поворачивающимся передним мостом.

ЛИТЕРАТУРА

- 1. Карташевич, А. Н. Теория автомобилей и двигателей: учеб. пособие / А. Н. Карташевич, Г. М. Кухаренок, А. А. Рудашко. Минск: РИПО, 2018. 307 с.
- 2. Мирошниченко, А.Н. Основы теории автомобиля и трактора: учеб. пособие / А. Н. Мирошниченко. Томск: Изд-во Том. гос. архит.-строит. ун-та, 2014. 490 с.
- 3. T4 F/N/V AXLES & TRACTION [Электронный ресурс]. Режим доступа https://agriculture.newholland.com/apac/en-nz/equipment/products/tractors-telehandlers/t4fnv/details/axles-traction. Дата доступа: 23.10.2020.

Аннотация. Приведены результаты исследований кинематики поворота колесного трактора с одновременным поворотом передних управляемых колес и переднего моста, получены расчетные формулы для определения радиуса поворота в зависимости от углов поворота колес и моста, проведена оценка улучшения маневренности колесного трактора с комбинированной схемой поворота.

Ключевые слова: колесный трактор, способ поворота, радиус поворота, маневренность.